Convexity of Domains of Riemannian Manifolds
نویسندگان
چکیده
In this paper the problem of the geodesic connectedness and convexity of incomplete Riemannian manifolds is analyzed. To this aim, a detailed study of the notion of convexity for the associated Cauchy boundary is carried out. In particular, under widely discussed hypotheses, we prove the convexity of open domains (whose boundaries may be nondifferentiable) of a complete Riemannian manifold. Variational methods are mainly used. Examples and applications are provided, including a result for dynamical systems on the existence of trajectories with fixed energy. Mathematics Subject Classifications (2000): 58E10, 53C22, 53C20.
منابع مشابه
ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملLocation of Nash Equilibria: a Riemannian Geometrical Approach
Existence and location of Nash equilibrium points are studied for a large class of a finite family of payoff functions whose domains are not necessarily convex in the usual sense. The geometric idea is to embed these non-convex domains into suitable Riemannian manifolds regaining certain geodesic convexity properties of them. By using recent non-smooth analysis on Riemannian manifolds and a var...
متن کاملOn the Convexity of Injectivity Domains on Nonfocal Manifolds
Given a smooth nonfocal compact Riemannian manifold, we show that the so-called Ma–Trudinger–Wang condition implies the convexity of injectivity domains. This improves a previous result by Loeper and Villani.
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کامل